9 research outputs found

    Assessment of Management Strategies for a Lowland Straightened Agricultural Stream

    Get PDF
    Channel straightening and dredging were extensively used in the 20th century to enhance agricultural drainage and facilitate crop maintenance and harvest. Although the adverse geomorphological and ecological effects of channelization are widely acknowledged, the use of alternative management strategies remains marginal in Southwestern Québec. Bank stabilisation projects are often carried out to mitigate local erosion problems with little assessment of their effects at the reach and watershed scales and with insufficient guidance on suitable designs. The objective of this research is to assess the impacts of various management strategies by studying a case of straightened agricultural stream. Field measurements in the Richer stream, which drains a small agricultural watershed in the St. Lawrence Lowlands, were used to parameterise a hydro-morphological model at the watershed scale and a 3D computational fluid dynamics model at the reach scale. The increase in stream power associated with the loss in sinuosity since the 1930s has resulted in noteworthy erosion problems in the studied watershed, in particular near residential development where there is limited space available to establish riparian strips. The tested management strategies at the watershed scale are the recreation of meanders and the installation of backwater ponds whereas, at the reach scale, stream barbs and bed weirs are tested. These management strategies are also assessed through a cost-benefit analysis which also takes into account environmental and practical implementation aspects. Results indicate that both the addition of ponds and re-meandering can markedly reduce unit stream power, thus the potential for erosion. Hydraulic structures such as stream barbs and V-shaped bed weirs re-align the flow towards channel centre, thus reducing near-bank velocities. The re-meandering approach involving natural vegetation regeneration has the highest overall effectiveness at the watershed scale whilst V-shaped weirs are found to be moderately effective at the reach scale. The diversification of flow conditions and channel morphologies associated with these approaches were important factors contributing to their higher suitability compared to other potential solutions. The modelling methodology used in this study can help limit the uncertainty surrounding restoration activities by better predicting the efficiency of proposed stabilisation techniques prior to their implementation while considering specific stream and watershed characteristics as well as ecological factors

    Simulating bank erosion over an extended natural sinuous river reach using a universal slope stability algorithm coupled with a morphodynamic model

    Get PDF
    Meandering river channels are often associated with cohesive banks. Yet only a few river modelling packages include geotechnical and plant effects. Existing packages are solely compatible with single-threaded channels, require a specific mesh structure, derive lateral migration rates from hydraulic properties, determine stability based on friction angle, rely on nonphysical assumptions to describe cutoffs, or exclude floodplain processes and vegetation. In this paper, we evaluate the accuracy of a new geotechnical module that was developed and coupled with Telemac-Mascaret to address these limitations. Innovatively, the newly developed module relies on a fully configurable, universal genetic algorithm with tournament selection that permits it (1) to assess geotechnical stability along potentially unstable slope profiles intersecting liquid-solid boundaries, and (2) to predict the shape and extent of slump blocks while considering mechanical plant effects, bank hydrology, and the hydrostatic pressure caused by flow. The profiles of unstable banks are altered while ensuring mass conservation. Importantly, the new stability module is independent of mesh structure and can operate efficiently along multithreaded channels, cutoffs, and islands. Data collected along a 1.5-km-long reach of the semialluvial Medway Creek, Canada, over a period of 3.5 years are used to evaluate the capacity of the coupled model to accurately predict bank retreat in meandering river channels and to evaluate the extent to which the new model can be applied to a natural river reach located in a complex environment. Our results indicate that key geotechnical parameters can indeed be adjusted to fit observations, even with a minimal calibration effort, and that the model correctly identifies the location of the most severely eroded bank regions. The combined use of genetic and spatial analysis algorithms, in particular for the evaluation of geotechnical stability independently of the hydrodynamic mesh, permits the consideration of biophysical conditions for an extended river reach with complex bank geometries, with only a minor increase in run time. Further improvements with respect to plant representation could assist scientists in better understanding channel-floodplain interactions and in evaluating channel designs in river management projects

    Comparing the Sensitivity of Bank Retreat to Changes in Biophysical Conditions between Two Contrasting River Reaches Using a Coupled Morphodynamic Model

    No full text
    Morphodynamic models of river meandering patterns and dynamics are based on the premise that the integration of biophysical processes matching those operating in natural rivers should result in a better fit with observations. Only a few morphodynamic models have been applied to natural rivers, typically along short reaches, and the relative importance of biophysical parameters remains largely unknown in these cases. Here, a series of numerical simulations were run using the hydrodynamic solver TELEMAC-2D, coupled to an advanced physics-based geotechnical module, to verify if sensitivity to key biophysical conditions differs substantially between two natural meandering reaches of different scale and geomorphological context. The model was calibrated against observed measurements of bank retreat for a 1.5 km semi-alluvial meandering reach incised into glacial till (Medway Creek, Ontario, Canada) and an 8.6 km long sinuous alluvial reach of the St. François River (Quebec, Canada). The two river reaches have contrasting bed and bank composition, and they differ in width by one order of magnitude. Calibration was performed to quantify and contrast the contribution of key geotechnical parameters, such as bank cohesion, to bank retreat. Results indicate that the sensitivity to key geotechnical parameters is dependent on the biophysical context and highly variable at the sub-reach scale. The homogeneous sand-bed St. François River is less sensitive to cohesion and friction angle than the more complex Medway Creek, flowing through glacial-till deposits. The latter highlights the limits of physics-based models for practical purposes, as the amount and spatial resolution of biophysical parameters required to improve the agreement between simulation results and observations may justify the use of a reduced complexity modelling approach

    Recent developments in the ABINIT software package

    No full text
    ABINIT is a package whose main program allows one to find the total energy, charge density, electronic structure and many other properties of systems made of electrons and nuclei, (molecules and periodic solids) within Density Functional Theory (DFT), Many-Body Perturbation Theory (GW approximation and Bethe–Salpeter equation) and Dynamical Mean Field Theory (DMFT). ABINIT also allows to optimize the geometry according to the DFT forces and stresses, to perform molecular dynamics simulations using these forces, and to generate dynamical matrices, Born effective charges and dielectric tensors. The present paper aims to describe the new capabilities of ABINIT that have been developed since 2009. It covers both physical and technical developments inside the ABINIT code, as well as developments provided within the ABINIT package. The developments are described with relevant references, input variables, tests and tutorials

    Squalenoyl Adenosine Nanoparticles Provide Neuroprotection After Stroke And Spinal Cord Injury

    No full text
    There is an urgent need to develop new therapeutic approaches for the treatment of severe neurological trauma, such as stroke and spinal cord injuries. However, many drugs with potential neuropharmacological activity, like adenosine, are inefficient upon systemic administration because of their fast metabolisation and rapid clearance from the bloodstream. Here, we show that the conjugation of adenosine to the lipid squalene and the subsequent formation of nanoassemblies allow a prolonged circulation of this nucleoside, to provide neuroprotection in mouse stroke and rat spinal cord injury models. The animals receiving systemic administration of squalenoyl adenosine nanoassemblies showed a significant improvement of their neurologic deficit score in the case of cerebral ischaemia, and an early motor recovery of the hindlimbs in the case of spinal cord injury. Moreover, in vitro and in vivo studies demonstrated that the nanoassemblies were able to extend adenosine circulation and its interaction with the neurovascular unit. This paper shows, for the first time, that a hydrophilic and rapidly metabolised molecule like adenosine may become pharmacologically efficient owing to a single conjugation with the lipid squalene.PubMedWo

    The ASOS Surgical Risk Calculator: development and validation of a tool for identifying African surgical patients at risk of severe postoperative complications

    No full text
    Background: The African Surgical Outcomes Study (ASOS) showed that surgical patients in Africa have a mortality twice the global average. Existing risk assessment tools are not valid for use in this population because the pattern of risk for poor outcomes differs from high-income countries. The objective of this study was to derive and validate a simple, preoperative risk stratification tool to identify African surgical patients at risk for in-hospital postoperative mortality and severe complications. Methods: ASOS was a 7-day prospective cohort study of adult patients undergoing surgery in Africa. The ASOS Surgical Risk Calculator was constructed with a multivariable logistic regression model for the outcome of in-hospital mortality and severe postoperative complications. The following preoperative risk factors were entered into the model; age, sex, smoking status, ASA physical status, preoperative chronic comorbid conditions, indication for surgery, urgency, severity, and type of surgery. Results: The model was derived from 8799 patients from 168 African hospitals. The composite outcome of severe postoperative complications and death occurred in 423/8799 (4.8%) patients. The ASOS Surgical Risk Calculator includes the following risk factors: age, ASA physical status, indication for surgery, urgency, severity, and type of surgery. The model showed good discrimination with an area under the receiver operating characteristic curve of 0.805 and good calibration with c-statistic corrected for optimism of 0.784. Conclusions: This simple preoperative risk calculator could be used to identify high-risk surgical patients in African hospitals and facilitate increased postoperative surveillance. © 2018 British Journal of Anaesthesia. Published by Elsevier Ltd. All rights reserved.Medical Research Council of South Africa gran

    Maternal and neonatal outcomes after caesarean delivery in the African Surgical Outcomes Study: a 7-day prospective observational cohort study.

    Get PDF
    BACKGROUND: Maternal and neonatal mortality is high in Africa, but few large, prospective studies have been done to investigate the risk factors associated with these poor maternal and neonatal outcomes. METHODS: A 7-day, international, prospective, observational cohort study was done in patients having caesarean delivery in 183 hospitals across 22 countries in Africa. The inclusion criteria were all consecutive patients (aged ≥18 years) admitted to participating centres having elective and non-elective caesarean delivery during the 7-day study cohort period. To ensure a representative sample, each hospital had to provide data for 90% of the eligible patients during the recruitment week. The primary outcome was in-hospital maternal mortality and complications, which were assessed by local investigators. The study was registered on the South African National Health Research Database, number KZ_2015RP7_22, and on ClinicalTrials.gov, number NCT03044899. FINDINGS: Between February, 2016, and May, 2016, 3792 patients were recruited from hospitals across Africa. 3685 were included in the postoperative complications analysis (107 missing data) and 3684 were included in the maternal mortality analysis (108 missing data). These hospitals had a combined number of specialist surgeons, obstetricians, and anaesthetists totalling 0·7 per 100 000 population (IQR 0·2-2·0). Maternal mortality was 20 (0·5%) of 3684 patients (95% CI 0·3-0·8). Complications occurred in 633 (17·4%) of 3636 mothers (16·2-18·6), which were predominantly severe intraoperative and postoperative bleeding (136 [3·8%] of 3612 mothers). Maternal mortality was independently associated with a preoperative presentation of placenta praevia, placental abruption, ruptured uterus, antepartum haemorrhage (odds ratio 4·47 [95% CI 1·46-13·65]), and perioperative severe obstetric haemorrhage (5·87 [1·99-17·34]) or anaesthesia complications (11·47 (1·20-109·20]). Neonatal mortality was 153 (4·4%) of 3506 infants (95% CI 3·7-5·0). INTERPRETATION: Maternal mortality after caesarean delivery in Africa is 50 times higher than that of high-income countries and is driven by peripartum haemorrhage and anaesthesia complications. Neonatal mortality is double the global average. Early identification and appropriate management of mothers at risk of peripartum haemorrhage might improve maternal and neonatal outcomes in Africa. FUNDING: Medical Research Council of South Africa.Medical Research Council of South Africa
    corecore